Antarctica: Technical Details

This page describes the new renderer (sometimes referred as Antarctica engine or pipeline) used in STK.

The new renderer is using (almost) exclusively functions from the core GL 3.3+ spec in order to take advantage of modern hardware features. While it uses Irrlicht graph traversal and Irrlicht material manager to some extent, all meaningfull GL calls are done by this new renderer. Irrlicht's code is only used for context creation, framebuffer creation/binding, texture loading, and some offscreen rendering like minimap generation and kart selection viewer. It should be possible to completly handle the framebuffer creation and binding (it's already done for shadow map because of Irrlicht's lack of textures arrays), but texture loading requires some support from irrlicht, in order to be able to load our mesh.

It was decided to move from irrlicht OpenGL path when it appeared that Irrlicht wasn't designed to handle a light prepass renderer at all. Actually Irrlicht is designed to be compatible with a wide range of hardware and software combination (even unaccelerated rendering) and thus does not map very well to a full shader pipeline : for instance, there is no way to use custom vertex attributes in a shader, and texture/framebuffer are limited to GL_TEXTURE_2D. It turned out to be much easier to write a new renderer from scratch instead of patching our copy of the massive Irrlicht codebase.

The main features of our renderer


Image Based Lighting is a technic to approximate environment lighting by approximating surrounding environment by a cubemap that is sampled to generate diffuse and specular lighting data. We currently only support external cubemap (typically skybox) but more traditional engine can generate a grid of light "probe" rendered offline or at loading time and eventually updated at runtime. Diffuse data consist in the 9 first SH coefficients and specular data are generated at loading time by importance sampling using phong distribution. A "DFG" modulation term (which approximate the impact of Fresnel and Geometric occlusion in the classic MicroFacet expression) will be used in the next release. See "Real Shading in UE4" and


We only ship point lights at the moment. They use the classic lambert equation for diffuse part (ie dot(N, L)). For specular we choose to use a Blinn Phong BRDF with the Schlick approximation of Fresnel factor to simulate angular dependency of material reflexion. Actually the formula is pretty close, if not equal, to the one described here, although the constant factor may vary as we dont currently have a physically based renderer :


The new renderer focuses at being efficient at rendering a lot of objects, for this it uses instancing to draw identical meshes at different place/scale.

Cascaded Shadow Mapping for sunlight

The algorithm used is the classic one with 3 splits/4 cascades, using a plain old hardware accelerated (through shadow2D sampler) PCF filter to remove aliasing.


We use Alchemy Ambient Obscurance algorithm that was first implemanted from Alchemy engine: . It is considered as one of the best AO algorithm available, as it is more temporaly stable than others methods and generate subtle yet noticeable ambient shadows. We also use the improvement listed here to make it useable from a performance pov :

Radiance Hint Global Illumination

This allows to have more natural Outlook light especially in shadowed area without having to add point like to fake GI. See paper and code here :

Planned features

Physics based rendering

see Antarctica: Physically Based Shading

Rectangular light

Point lights are quite non realistic and they have noticeable shortcomings : their radiance tend to go very high close to them, their diffuse component is a boring sphere and their specular reflexion is infinitely thin so you have to make everything ultra sharp to actually see them. Unfortunatly shadowing area light requires different algorithm than sunlight shadow and point light shadow (see for an algorithm that uses voxellisation but produces great visual results)

Shadows (and maybe RSM ?) for point light

Screen Space Raytraced Reflexion

Introduced by Crysis 2 DX11 patch, SSRR is doing raytracing on the final image to generate local reflexion. These reflexions are used for all surface as an extra specular component so that not just glossy surface benefits from it. A lot of games reports to use it today, like assassin's creed 4, killzone 4...